
NASA Technical Memorandum 103982

Correlation of Airloads on a
Two-Bladed Helicopter Rotor

/"-

Francisco J. Hernandez and Wayne Johnson

(NASA-TM-I03982) CORRELATION OF

AIRLOAOS ON A TWO-BLAOED HELICOPTER

ROTOR (NASA) 26 p

N94-26143

Unclas

G3/02 0208994

April 1993

National Aeronautics and
Space Administration

https://ntrs.nasa.gov/search.jsp?R=19940021640 2017-08-15T19:53:11+00:00Z





NASATechnicalMemorandum103982

Correlation of Airloads on a
Two-Bladed Helicopter Rotor
Francisco J. Hernandez, Ames Research Center, Moffett Field, California
Wayne Johnson, Johnson Aeronautics, Palo Alto, California

April 1993

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000





Correlation of Airloads on a Two-Bladed Helicopter Rotor

FRANCISCO J. HERNANDEZ AND WAYNE JOHNSON*

Ames Research Center

Summary

Airloads measured on a two-bladed helicopter rotor in

flight during the Ames' Tip Aerodynamic and Acoustic

Test are compared with calculations from a compre-

hensive helicopter analysis (CAMRAD/JA), and the

pressures compared with calculations from a full-potential

rotor code (FPR). The flight-test results cover an advance

ratio range of 0.19 to 0.38. The lowest-speed case is

characterized by the presence of significant blade-vortex

interactions. Good correlation of peak-to-peak vortex-

induced loads and the corresponding pressures is
obtained. Results of the correlation for this two-bladed

rotor are substantially similar to those for three- and four-

bladed rotors, including the tip-vortex core size for best

correlation, calculation of the peak-to-peak loads on the

retreating side, and calculation of vortex-induced loads on

inboard radial stations. The higher-speed cases are charac-

terized by the presence of transonic flow on the outboard

sections of the blade. Comparison of calculated and

measured airloads on the advancing side is not considered

appropriate because the presence of shocks makes chord-

wise integration of the measured data difficult. However,

good correlation of the corresponding pressures is
obtained.
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speed of sound

rotor thrust coefficient, T/pnR2(D.R) 2

dimensionless blade-section lift,

L/p( D-R )2 c

blade-section lift (force per unit span)

rotor-tip Mach number, D.R/c s

blade-section Mach number, U/c s

normal force (per unit span); number of
blades

main rotor torque

pressure

blade radial station, measured from

center of rotation

rotor radius

rotor thrust

blade-section velocity (normal to span)

helicopter flight speed

chordwise distance from leading edge

angle of attack

rotor tip-path-plane angle, positive
forward

rotor longitudinal tip-path-plane tilt

relative to shaft, positive forward

rotor lateral tip-path-plane tilt relative to

shaft, positive towards retreating side

advance ratio, V/DR

air density

rotor solidity, Nc/zrR

rotor azimuth angle, measured from
downstream in direction of rotor

rotation

rotor rotational speed



Introduction

The accurate prediction of rotor airloads is one of the

most challenging problems in the field of theoretical aero-

dynamics and one that is far from being solved. The diffi-

culties encountered making such predictions are caused
by the highly complex nature of the rotor flowfleld, which

in forward flight includes compressibility effects on the

advancing side, dynamic stall on the retreating side, and
blade-vortex interactions. All of these features of the

aerodynamic loading must be adequately handled before

an accurate calculation of rotor performance, structural

loads, or noise can be expected. This paper examines
several issues involved in rotor airloads calculations, in

particular focusing on blade-vortex interaction at low

speed and the influence of transonic flow at high speed.

In order to look in detail at the factors that affect the accu-

rate representation of the rotor aerodynamics, the compre-
hensive helicopter code CAMRAD/JA (ref. 1) was used to

model the AH-1G rotor system. The results are compared

with measured flight-test dam on an AH-1G taken during
the Tip Aerodynamic and Acoustic Test (TAAT) con-

ducted at Ames Research Center (ref. 2). This is the first

major correlation effort undertaken using the AH- 1G air-
loads database.

The CAMRAD/JA model was used to calculate the per-
formance, dynamics, and aerodynamic behavior of the

rotor. The principal objective of the paper is to compare

the measured and calculated blade-section lift at high and

low speed. It is useful also to examine the pressure corre-

lation for a subset of the results. For this purpose, the Full

Potential Rotor code (FPR) was used (ref. 3), coupled

with CAMRAD]JA to account fully for blade motion and
wake effects. The pressure calculations are also of direct

interest for predictions of rotor noise. This paper investi-

gates the detailed pressure loading associated with the
blade-section lift correlation.

The calculations are compared with flight measurements

at different advance ratios ranging from/1 = 0.19 to 0.38.

The lowest-speed case is characterized by the presence of

significant blade-vortex interactions. The higher-speed

cases are characterized by the presence of transonic flow

on the outboard sections of the blade. This paper describes

the flight test, the analytical methods used, the modeling

of the AH- 1G rotor, the assumptions made, and the result-

ing correlation between theory and flight measurements.

Tip Aerodynamic and Acoustic Test (TAAT)

The aircraft used during the Tip Aerodynamic and

Acoustic Test (TAAT) was the fh'st production AH-1G

Cobra built (fig. 1). The AH-1G had a two-bladed,

teetering rotor with a constant-chord, rectangular-
planform blade. The rotor radius was 22 ft. This flight-test

program was conducted at NASA Ames Research Center

during the early 1980s, using a set of highly instrumented
rotor blades to study rotor-tip aerodynamics and acoustics.

To accommodate the additional instrumentation (ref. 4),

the blades used a symmetrical airfoil with a modified OLS

(Operational Loads Survey) section. With this airfoil, the
blade chord was increased from the standard 27.0 in. to

28.625 in., and the thickness-to-chord ratio was increased

from 0.09330 to 0.09677. The rotor solidity was 0.06910,

and the twist was linear from root to tip with a magnitude

of-10 degrees. The gross weight of the aircraft was

approximately 8000 lb.

The set of instrumented blades was developed for the

U. S. Army Operational Loads Survey (OLS) test. For the
TAAT, transducers at three new radial stations were

added near the tip of the blade. The complete set of pres-

sure transducer locations is shown in figure 2. Reference 2

presents a comprehensive description of the measure-

ments with an analysis of the key phenomena.

Flight data from the TAAT test are stored on digital tapes

and are available through DATAMAP (ref. 5). A cycle
average of two rotor revolutions was used for the correla-

tion with theory in this paper. DATAMAP was also used

to process the data, making use of its large number of
analysis tools, which include the derivation of the section
load coefficients. The airloads database consists of six

forward-speed cases and one hover condition, as shown in

table 1. For this paper, all forward-speed cases were used,

with special emphasis on the low-speed case of 82 knots

and the high-speed case of 159 knots.

Analytical Methods

CAMRAD/JA

The bIade airloading was calculated using the compre-

hensive helicopter code CAMRAD/JA (ref. 1). The rotor

aerodynamic problem is based on lifting-line theory, using

steady, two-dimensional airfoil characteristics and a vor-
tex wake. The rotor wake model is based on a vortex lat-

tice approximation of the wake. A small, viscous-core

radius is used for the tip vortices. A large core size is used

for the inboard wake elements to produce an approxima-

tion for sheet elements. A model of the wake rollup is
included.

The analysis separates the aerodynamic problem into

inner (wing), and outer (wake) problems, which are

solved independently and then combined through a
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• Table 1. AH-1G TAAT operating conditions

Test points (counters)

Variable 2152 2153 2154 2155 2156 2157 2370

RPM 307.2 315.0 314.7 315.2 315.5 315.9 321.0

OAT, o C 11.5 18.5 18.5 18.5 18.5 18.5 16.5

Stat. press., psia 13.65 13.60 13.45 13.30 13.24 13.18 14.75

Airspeed, KTAS 159 146 129 116 98 82 0

/.t 0.377 0.341 0.303 0.268 0.230 0.189 0.000

Gross weight, lb 8066 8000 7941 7920 7890 7870 9115

CT x 100 0.474 0.460 0.462 0.464 0.464 0.464 0.485

MR torque, in-lb 224310 184126 152109 130789 105313 93472 --

Long. flap., deg -1.13 - 1.87 -2.20 -2.38 -2.29 -2.13 -5.05

Lateral flapping, deg -I.11 --0.60 --0.51 --0.19 -0.01 0.15 -4.12

Fuselage _t, deg -3.9 -1.7 --0.5 1.4 3.4 4.0 --

Pitch attitude, deg -4.56 -2.36 -2.51 0.37 -0.16 0.89 -4.21

Long. eye. pitch, deg 11.8 10.2 8.9 7.9 6.5 5.5 1.9

Lat. eye. pitch, deg -3.6 -2.4 -2.4 -2.1 -1.8 -1.7 2.4

Collective pitch, deg 18.0 15.8 14.5 13.4 12.2 11.7 14.4

matching procedure. The outer problem consists of an

incompressible vortex wake from a lifting line, with

distorted geometry. The inner problem consists of

unsteady, compressible, viscous flow about an infinite-

aspect-ratio, yawed wing. The inner problem is split into
two-dimensional, steady, compressible, viscous flow

(airfoil tables) with empirical corrections for unsteady
aerodynamics, dynamic stall, and yawed flow. A detailed

description of the aerodynamic analysis is given in
reference 1.

The rotor structural model is represented by a section

analysis based on engineering beam theory. The equations
of motion are obtained from equilibrium of the inertial,

aerodynamic, and elastic forces on the portion of the blade

outboard of a particular blade section. The interface

between the aerodynamics and dynamics models is

defined by the section aerodynamic forces and the section
velocities.

The wake-geometry models in CAMRAD/JA include:
uniform inflow (linear variation of inflow over the rotor

disk), nonuniform inflow with a prescribed wake geome-

try, and nonuniform inflow with a free wake geometry. As

suggested in reference 6, for/.t < 0.25 the free wake

analysis is used because of the highly distorted wake that

remains close to the rotor plane. For higher advance
ratios, where the wake is convected downward faster, a

prescribed wake analysis gives the same accuracy and is

more computationally efficient. These options were used

in the computations performed for this paper.

FPR Code

The Full-Potential Rotor code (FPR) (ref. 3) was used to

calculate the blade surface pressures. It was iteratively

coupled with CAMRAD/JA to account fully for blade

motion and wake effects. This code, developed by the

U. S. Army at Ames Research Center, solves the

unsteady, three-dimensional, full potential equation in

conservation form. The code employs a finite-difference

scheme that is solved using the method of approximate
factorization. It has been demonstrated (ref. 7) that the

FPR-CAMRAD,rJA analysis produces nearly the same

section lift as CAMRAD/JA, and hence is an appropriate

tool to investigate the detailed pressure loading associated
with the blade-section lift correlation.

The grid system used consists of a spanwise series of par-

allel O-grids. For the computation of rotor flows, an

approximate rotational coordinate velocity is assigned to

each grid point. Boundary conditions consist of a

transpiration velocity at the surface, and nonreflection at

the outer boundary.

A typical grid size used for the calculations for the

AH-IG Cobra consists of 80 points in the chordwise

direction, 25 in the spanwise direction, and 25 in the nor-

mal direction. The finite-difference grid extends in the

spanwise direction approximately 4 chords inward of the



spanwisedirectionapproximately4chordsinwardofthe
tipand1.2chordsoutwardfromthetip.Theextentofthis
computationalfluiddynamics(CFD)regionisdependent
ontheadvanceratioutilizedinthecalculation.Athigh
advanceratios,thestalledregionontheretreatingsideof
thedisklimitstheinboardextentoftheCFDdomain.The

outer boundary of the grid is located 5 chords from the

surface of the blade. Constant time steps of 0.25 deg of

azimuth angle were used for the calculations. Computer

time for a 360-deg computation was approximately 1600

CPU seconds on the NASA Ames Cray Y-MP. Additional
information on the FPR code can be found in references 3
and 7.

Model Description

The rotor aerodynamic tables utilized in the

CAMRAD/JA model of the AH-1G were based on the

Bell Helicopter Textron, Inc. (BHT)-developed 540 airfoil
tables given in reference 4. The BHT 540 airfoil tables

were generated from a wind-tunnel test, with standard

corrections applied to maximum lift and profile drag.

Because data were not available at high angle of attack
and high Mach number, NACA 0012 tables are used, with
a smooth transition between the two.

The 540 airfoil tables were modified using wind-tunnel
data for the OLS/TAAT airfoil from a test conducted at

NASA Langley Research Center (ref. 8). The OLSfrAAT

airfoil was tested over a Reynolds-number range from

3 x 106to 7 x 106, angles of attack from approximately
--4 deg to 12 deg, and Mach numbers from 0.34 to 0.88 in

the Langley 6- by 28-in. Transonic Tunnel. The BHT 540

airfoil tables were corrected using the Langley wind-

tunnel data. The two databases were very similar, except

at high Mach numbers. Using the Langley data introduced

corrections to the maximum lift coefficient, the lift curve

slope, and drag and moment coefficients at the stall con-

dition. At the high Mach numbers, the Langley data were
used, with a smooth transition to the NACA 0012 values.

In all cases, symmetry between positive and negative

angle of attack was imposed, including cases where the
data did not indicate such behavior. This new airfoil table

was used as part of the AH- 1G CAMRAD/JA model.

The baseline for the OLS blade structural properties was
taken from reference 4. Such data include blade mass,

geometric twist, center of gravity offset, tension center

offset, flapwise and chordwise bending stiffness, moment

of inertia, polar radius of gyration, and torsional stiffness.

Each structural property was generated in a stepwise

manner for 48 segments as a function of blade radius.

Some of the blade's structural characteristics are given in

figure 3. For the OLSbqade, the elastic axis is assumed to

coincide with the feathering axis. The quarter chord of the

blade shifts aft 0.281 in. relative to the feathering axis at
r/R = 0.31. This is caused by the addition of the instru-
mentation sleeve to the blade.

The calculated blade collective- and cyclic-mode frequen-
cies are given in tables 2 and 3. These were obtained from

the flutter analysis in CAMRAD/JA with no aerodynam-
ics included_ The boundary condition was teetering

motion. The first four flapwise modes are identified along
with the first two lag and torsion modes.

For the calculations, the rotor was trimmed to the mea-

sured flight conditions, defined by helicopter weight, shaft

angle of attack, and longitudinal and lateral tip-path-plane

angles relative to the shaft. These quantities are given in
table 4 (ref. 2).

Here, ct,tp p is the sum of the shaft angle and the longitudi-

nal flapping relative to the shaft. In figure 4 these quanti-
ties are plotted vs. advance ratio. Notice the drastic

change in tip-path-plane angle for advance ratios greater
than 0.27.

In figure 5, the rotor-shaft torque coefficient is shown as a

function of advance ratio. The disagreement at high

advance ratios may be caused by the presence of dynamic
stall. However, the calculated power for advance ratios

above 0.34 follows the trend of the tip-path-plane tilt

(which was the specified trim state in the calculations),

suggesting that measurement of the shaft angle may be in

error. The correlation is sufficient for the present pur-
poses, however, since the airloads calculations are not

very sensitive to the difference in measured and calculated

propulsive force implied by figure 5.

Table 2. Collective-mode frequencies (per/rev)

Modes Flap Lag Torsion

1st 1.109 1.631 2.656

2nd 3.107 10.709 7.656

3rd 5.227 -- m

4th 8.831 ....

Table 3. Cyclic-mode frequencies (per/rev)

Modes Flap Lag Torsion

1st 1.000 1.433 2.869

2nd 2.506 10.329 8.376

3rd 4.515 .....

4th 7.502 .....

4



Table 4. Flight-test conditions

V, knots /.t eZxpp,deg CT/Cr fls,deg tic,deg

82 0.189 1.24 0.0672 0.15 2.13

98 0.230 2.45 0.0671 --0.01 2.29

116 0.268 2.75 0.0672 --0.19 2.38

129 0.303 4.71 0.0669 --0.51 2.20

146 0.341 4.23 0.0666 --0.60 1.87

159 0.377 5.68 0.0686 -1.11 1.13

Blade Airloads

The rotor airloads will _ presented in the form of section

lift around the azimuth, as defined by the following

equation:

d(C T/S)/dr = L/p(f_R)2c (I)

The experimental data provided the normal force, which
for small angle of attack (CL =--CN) and a constant chord
blade can also be written in the form:

d(C T IS)/dr = _l MECN (2)

2Mtip 2

Equation (2) was used to convert the flight data into the

same form as the section lift given by the calculations in
equation (1).

As a check on the AH-1G flight-test data, the total rotor

lift was calculated and compared with the gross weight of
the aircraft. This was accomplished by integrating the

blade pressures chordwise and computing the azimuthal

average of the section lift over the rotor disk. The thrust

was then calculated by integrating the section lift over the
blade radius. For the case of V = 82 knots, a rotor thrust

of 7989 lb was obtained, which corresponds to an aircraft
weight of 7870 lb. The difference between the thrust and

gross weight might be caused by a download on the fuse-

lage created by the rotor downwash. Again, the correla-

tion is sufficient for the present purposes, since the air-

loads calculations are not particularly sensitive to a thrust

change of this magnitude.

Discussion of Results: Low-Speed Cases

Effect of Torsional Degrees of Freedom

The AH-1G rotor blade has a fundamental pitch/torsion

frequency below 3/rev (tables 2 and 3), so the possibility

of a significant effect of the blade dynamics on the air-

loads was anticipated. To examine this effect in detail, a

parametric study was done on the first and second blade

torsional degrees of freedom. Figure 6 shows the effect of

different combinations of torsional degrees of freedom on

the blade loading at r/R = 0.91 and r/R = 0.97. It is seen

that the effects occur on the front part of the rotor disk,

where the blade undergoes the greatest torsional loads.

Minor differences are seen between the different options,

but using both first and second torsion degrees of

freedom, the calculations correlate slightly better with the

flight measurements. This option was selected as the

baseline for all subsequent calculations.

Effect of Tip-Vortex Core Size

Because of its great effect in blade airloads, specifically

on blade-vortex interaction, the size of the tip-vortex core
was varied in the calculations to establish the most

appropriate size for each flight condition. The tip-vortex

core radius determines the maximum velocity induced by

the vortex. Core sizes ranging from 0.015R to 0.040R
(approximately 15 to 40% chord) were used and com-

pared with flight data at different radial stations. Figure 7

shows such a comparison for V = 82 knots at several

radial stations on the blade. The calculations overpredict

the loading on the front part of the disk and underpredict

the magnitude on the forth quadrant. This overprediction
occurs for all radial stations examined.

Significant blade-vortex interaction is seen at the 90-deg-

and 270-deg-azimuth stations. The core size has a modest

influence on the peak-to-peak vortex-induced loading on

the advancing side, but no influence on the retreating side.

This indicates that there is a large vertical separation of

the tip vortex from the blade; hence the loads are not sen-

sitive to tip-vortex core radius. Rather, the loads are more

dependent on the strength of the vortex than on its peak

velocities. Peak-to-peak amplitudes are well matched on



the retreating side. Peak-to-peak amplitudes are under-

predicted for r/R = 0.864 on the advancing side. For the

outboard stations, smaller core sizes generally give a bet-

ter representation of the peak-to-peak amplitudes (fig. 7(e)

is an expanded view for r/R = 0.91).

This two-bladed rotor exhibits less of an influence of core

size on the airloads than would be seen for a three- or

four-bladed rotor at the same advance ratio, since with

two blades, the tip vortex has more time to convect

between its creation and its interaction with the following
blade. While it is therefore more difficult to deduce the

core size based on the present data, it appears that a core

radius of about 20% chord is a good choice. This is

approximately the same core radius found to be appropri-
ate for three- and four-bladed rotors in reference 9. Notice

also that the vortex-induced loads tend to be overpredicted

on the retreating side (a feature also observed in refer-

ence 9 for three- and four-bladed rotors). Since for this

case the retreating-side blade-vortex interaction is not

sensitive to core size, this discrepancy may be caused by

partial tip-vortex rollup. The tip vortex may not be

completely rolled up by the time it reaches the following

blade, so the strength may be less than the value of peak
bound circulation (as assumed in the calculation).

In figure 8, the influence of core size is shown for

V = 98 knots at r/R = 0.91, r/R = 0.955, and r/R = 0.97.

The results are similar to those of the previous case, the

calculations exhibiting only modest influence of core size

on the advancing side and none on the retreating side. In

order to explore this lack of sensitivity to core size in

these two cases, a lower-speed case of V = 43 knots (for
which no flight-test data were available) was examined.

Figure 9 shows this case, in which a more significant
effect of core size is seen in both the advancing and

retreating side of the disk. This confirms the assumption
that, at 82 knots, the blade vortex passes the blade at a

large vertical distance; thus the core size has a negligible
effect.

In all cases analyzed, small core sizes of about 0,020R

showed a slightly better Correlation and were used as

baseline for the following calculations.

Inboard Blade-Vortex Interaction

Figure 10 shows the airloads calculated using an inboard
core size of 0.02R, on both outboard and inboard radial

stations. Although good calculation of peak-to-peak
vortex-induced loads is achieved on outboard stations

(r/R > 0.91), the oscillatory loads are significantly over-

predicted on inboard stations when this core size is used.

CAMRADIJA can simulate this effect (with no implica-

tion that the physics of the phenomenon are understood,

however) by using a larger core size when calculating the

vortex-induced velocities at inboard collocation points on

the blade. Figure 10 also shows the improved correlation

produced by this model, using a core size of 0.14R for

inboard stations (transitioning to 0.02R for radial stations

from r/R = 0.76 to 0.88). It is therefore observed that

when the vortex-induced loads are calculated using a core

size that gives good correlation at the blade tip, the

strength of the blade-vortex interactions is significantly

overpredicted for inboard stations. This phenomenon has

been observed in other correlation studies as well (ref. 9).

Blade-Surface Pressure Distributions

Calculated blade-surface pressure distributions for
V ffi 82 knots are given in figure I 1 at r/R = 0.910 for

azimuths on the advancing and retreating side (near the

blade-vortex interactions). Data for the last chordwise

pressure transducer (x/c = 0.91) were not available for this

radial station. On the advancing side, calculations under-

predict the blade upper-surface pressures, especially the

pressure rise close to the leading edge. Better correlation

is seen on the retreating side, except at 300 deg azimuth.
This correlation is consistent with the airloads results

(fig. 7(b)), where better correlation was obtained for the

retreating-side blade-vortex interaction.

Figure 12 shows similar pressure correlations for

r/R = 0.97 (corresponding to airloads in fig. 7(d)). Again,
the calculations underpredict the blade-surface pressures

throughout the rotor disk. At inboard radial stations the

surface pressure correlation was better, as evidenced in
figure 13 for r/R = 0.60 at three azimuths on the advanc-

ing side (corresponding to airloads in fig. 10(b)).

Low-Speed Airioads Correlation

The present paper and reference 9 compare the measured

and calculated airloads for the three cases given in table 5.

All the rotors considered had rectangular planforms

(except for the trapezoidal tip cap of the H-34) and linear

twist (except for zero twist at the tip of the SA349/2).

These three cases exhibit the following common behavior:

a) Good correlation with measured peak-to-peak vortex-

induced loads is obtained using a tip-vortex core radius of

Table 5. Low-speed airloads correlation cases

Rotor N cr c/R CT/O /./

AH-IG 2 0.069 0.101 0.067 0.19

SA349/2 3 0.064 0.067 0.065 0.14

H-34 4 0.062 0.049 0.082 0.18



approximately 20% chord. This val:t]e i_in the range of

measured core sizes for rotor wakes, although it is proba-
bly still somewhat too large.

b) With a single tip-vortex core size for the wake model,

and assuming that the strength of the tip vortex equals the
peak bound circulation of the blade when the vortex is

generated, there is a tendency to overpredict the peak-to-
peak loads on the retreating side and underpredict on the

advancing side. This result suggests that, on the retreating

side, the core size is larger, or that the vortex strength is
less than the peak bound circulation.

c) Something is happening on the inboard part of the
blade to reduce the measured vortex-induced loads.

References 6 and 9 speculate that this effect is associated

with a smaller blade-vortex separation calculated for
interactions on the inboard part of the blade than that

calculated for interactions at the tip of the blade.

Discussion of Results: High-Speed Cases

Blade Airloads

Airloads were calculated for the higher-speed cases pre-
sent in the database, using the baseline parameter values

determined for 82 knots. Figure 14 compares the mea-

sured and calculated airloads at 159 knots _ = 0.377).
For all the tip radial stations shown, the measured section

lift exhibits a roughly constant value in the first quadrant

of the disk before dropping to near or below zero at about

90 deg azimuth. In contrast, the aerodynamic mechanisms
present in the calculation produce a continuous decrease

of the section lift in the first quadrant, as would be

expected because of roll moment balance. There is a slight
bump in the calculated airloads, produced by interaction

with the tip vortex from the preceding blade. In the analy-

sis (ref. 6), the tip vortex has negative strength in this

region, since the tip loading is negative. Figure 15 com-

pares measured and calculated airloads for speeds of 116,
129, and 146 knots. The results are similar to those at

159 knots. The behavior of the measured airloads, and the

resulting correlation with calculations, have been

observed in investigations of high-speed airloads with
other rotors (ref. 6). For this two-bladed rotor, with con-

stant airfoil and low-aspect-ratio blades, significant com-
pressibility effects occur even at relatively low advance

ratios (fig. 15).

The nearly constant lift present in the plotted experimental

data on the advancing side may be caused by difficulties

in determining the proper shock location during data

reduction. As an example, figure 16 Shows the measured

pressure coefficient at 75 deg azimuth, where the shock

appears betwe_the x/c = 0.25 and 0.35 pressure trans-

ducers. The baseline section lift is obtained using direct

interpolation between the measured pressures (fig. 16(a)).

Figures 16(b) and 16(c) show alternate interpretations of
the pressure change associated with the shock, which will

produce integrated lift coefficients higher and lower than
the baseline. Figure 17 shows the measured and calculated

section lift and lift coefficient, including, for several
azimuths, results of these alternate interpretations of the

flight-test data. The correlation between calculated and

measured airloads is evidently very sensitive to such

interpretations. Notice also that considering lift rather than

lift coefficient magnifies the differences, because it is the

advancing side that is of interest.

Another phenomenon present in the experimental data at

this flight condition is the sharp bump in section lift at

r/R = 0.955, seen in the second qua&ant (e.g., fig. 14(c)).

A similar effect has been observed in flight and wind-

tunnel data on other rotors. To examine this effect, figure

18 presents the surface pressures before, at, and after the

peak lift. The pressures indicate that at 120 deg azimuth
there is a strong shock wave present on both upper and

lower surfaces that rapidly decreases in magnitude at

135 deg and is non-existent at 150 deg azimuth. Because

of the absence of pressure tranducers on the lower surface

between 5% and 25% chord, direct interpolation of the

pressures (as illustrated by fig. 18(b)) produces a sharp
rise in the integrated Section lift as soon as the lower-
surface shock moves forward of 25% chord. Hence this

and other sharp changes in the measured section lift are
most likely attributable to a lack of sufficient data to

define the movement of the shocks on the advancing side
of the blade, rather than to any aerodynamic phenomenon
of rotor blades in transonic flow.

Given the difficulties associated with making a highly

instrumented rotor blade, it may be impossible to achieve
a chordwise and spanwise resolution sufficient to examine

all aerodynamic phenomena. A more sophisticated
method of integrating the pressures to obtain section lift,

specifically one that estimates the shock location implied
by the data, would be most useful for future tests. For the

present investigation, it is concluded that there is little to

be gained by trying to compare the measured and
calculated section lift.

Blade-Surface Pressure Distributions

Figures 19 and 20 compare the measured and calculated
blade-surface pressure coefficients for V = 159 knots at
r/R = 0.970, for several azimuths in the first and second

quadrants, respectively. Transonic flow is seen to be pre-
sent at 30 deg azimuth and becomes more dominant close

to 90 deg. The shock strength and location are well



predictedbythecalculations.UpperZsurfacepressuresare
underpredictedinmostcases,Thephenomenaevidentin
the7neasurementsaregenerallycapturedbythecalcula-
tions,withtheexceptionofthedelayinformationofthe
lower-surfaceshockat60degazimuth.

Conclusions

Airloads calculations were performed for a two-bladed

rotor using a comprehensive helicopter analysis and were

correlated with flight-test data. Fairly good correlation of
peak-to-peak vortex-induced loads was obtained for a

low-speed case. Sensitivity to tip-vortex core size at this

speed was observable but small on the advancing side,

and negligible on the retreating side. This relative insensi-
tivity to core size (compared to a four-bladed rotor at the

same advance ratio) is attributed to a larger vertical sepa-
ration of the tip vortex from the blade. Therefore, the

peak-to-peak loading is more dependent on the vortex
strength than on the core size. Nonetheless, the results of

the correlation for this two-blade rotor were substantially
similar to the results for three- and four-bladed rotors,

concerning the tip-vortex core size for best correlation,

calculation of the peak-to-peak loads on the retreating
side, and calculation of vortex-induced loads on inboard
radial stations.

Blade-surface pressures for the low-speed case correlated

reasonably well with flight data, particularly on the
retreating side. This was consistent with the section lift

correlation, where the second blade-vortex interaction was
better matched.

Airloads were calculated for the higher-speed cases pre-
sent in the database. All cases showed similar differences

between the calculations and the flight measurements. In

particular, the measured section lift exhibited a roughly

constant value in the first quadrant before dropping to
near zero, whereas the calculations show a continuous

decrease of the section lift. It was speculated that the

behavior of the flight data was caused in part by d___cul-

ties determining the shock location when integrating the

measured pressures. It was demonstrated that sharp

changes in the measured section lift are most likely
attributable to a lack of sufficient pressure transducers to

define the movement of the shocks on the advancing side
of the blade. For the present investigation, it was con-

cluded that there is little to be gained by trying to compare
the measured and calculated section lift.

Blade-surface pressures were compared for the high-speed

case and correlated fairly well with flight data, even

where measured and calculated lift disagreed. Shock

location and magnitude were good, but upper-surface

pressures were underpredicted in most cases. The

phenomena evident in the measurements were generally

captured by the calculations, with the exception of the
delay in formation of the lower-surface shock in the first

quadrant.
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Figure 7. AH-1G Cobra test helicopter at NASA Ames.
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